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What’s an Antenna

Interfaces between guided and unguided media
i.e. coax/waveguide and propagation through space

 Transmitting and receiving models
Both equally valid
Different ways of looking at the same thing
We’ll bounce freely between the receiving and 

transmitting models
Exhibits “gain”

More sensitive to signals in certain directions
Throws more power in certain directions
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Transmitting Model
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Transmitting Model

The power absorbed by the radiation resistance is 
distributed over 3D space and radiated away

The pattern causes the energy to be stronger in some 
directions and weaker in others
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Transmitting Model
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Receiving Model

Receives both signal and 
noise from the 
environment

Presents an “effective 
area” AE to the 
environment 

High gain => large AE, 
low gain => small AE 
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Receiving Model

The power seen at the receiver is a function of effective 
area in a direction times the power density from that 
direction
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Receiving Model – Aperture

Aperture is the amount of electrical “area” an antenna 
presents to its environment

Numerically related to antenna gain
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Receiving Model – Aperture

The relationship between gain and effective area is

Some antennas, like parabolic dishes, present a physical 
area to the oncoming wave front. The aperture 
efficiency of such antennas is
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Receiving Model – Aperture Antennas

Aperature Antennas
Obvious Physical Aperture

Non-Aperature Antennas
No Obvious Physical Aperture

Parabolic Dish
Antenna

Horn Antenna

Yagi-Uda Antenna

LPA Antenna

BiConical Antenna

Dipole Antenna
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Gain and Beamwidth

Gain and beamwidth are 
inversely related

Antennas achieve gain by 
focusing energy in one 
direction at the 
expense of other 
directions

Empirical relationships
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Isotropic Radiator

Imaginary antenna that represents a lossless geometric point in free 
space

Radiates a perfect equally signal in all directions
A perfect spherical pattern

Is equally sensitive to signals arriving from all directions
Standard gain => dBi (dB relative to an isotropic antenna)
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Ideal Antenna Types

Let’s look at some almost real antennas
The isotropic radiator

Gain standard
Not easy to build

The short dipole or doublet
The basic for almost all of our antenna analysis
Math isn’t too bad
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The Ideal or Short Dipole
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The Ideal or Short Dipole
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The Ideal or Short Dipole

Far Field 
All 1/r2 and 1/r3 terms assumed = 0

Near field
r is very small
The 1/r2 and 1/r3 terms dominate
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The Ideal or Short Dipole

Far Field Equations Near Field Equations
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Near Field => High E-field coming off the tips of the dipole
Far Field => Null coming off the tip
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Realized Antennas

Let’s look at some real antennas
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Realized Antennas – Mechanical Precision 

Building an antenna is all about positioning electrical 
conductors in 3-space

In general, features smaller than λ/20 will not affect the 
performance of a structure

The lower limit is about λ/15 (some use λ/10)
Antennas with very high gain or very low side lobes will 

require tighter tolerances
At 30 GHz, the wavelength is 1cm => tolerances need to 

be good to 0.5mm
Building a 4-foot parabolic reflector to an accuracy of 

0.5mm is a tough job
At 3 GHz, λ = 10 cm so it’s an easier job because the 

tolerance is around 5mm
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Half-Wave Dipole

Most antennas are variations on a dipole or made from 
arrays of dipoles

2
Length


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Current
Distribution

Current Distribution
Approximated by

Doublets
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Half-Wave Dipole
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Half-Wave Dipole - Pattern

The familiar doughnut pattern
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Longer Dipoles
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Bi-conical Antennas

Fatten the end
of the dipole

2
SMALLLength




2
BIGLength


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Fatten the end
of the dipole
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Reflectors

Infinite, Perfectly
Conducting Ground

Plane

Image Antennas
Mirrored in the Ground

Plane

Physical Antennas
Above the Ground

Plane

Observer
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Corner Reflectors

Real Dipole

Image Dipoles
Mirrored in the Corner

Reflector
Corner Reflector
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Monopoles

Infinite, Perfectly
Conducting Ground

Plane
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Discones
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Slot Antennas

Infinite, Perfectly
Conducting Ground

Plane

A vertical slot is
equivalent to a

horizontal dipole

2


2


Infinite, Perfectly
Conducting Ground

Plane

A vertical slot is
equivalent to a

horizontal dipole

2


2
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Array Factor

 1 1cosA t 
1

2

3

4

5

n

 2 2cosA t 

 3 3cosA t 

 4 4cosA t 

 5 5cosA t 

 cosn nA t  

d2 d3 d4 d5



31

Array Factor – Isotropic Radiators, λ/4 Apart
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Array Factor – Isotropic Radiators, λ/2 Apart
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Array Factor – Isotropic Radiators, λ Apart
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Array Factor and the Radiation Pattern of the Individual 
Elements

X =

Pattern of the
Individual
Radiators

Pattern of the Array
with Isotropic

Radiators
Pattern of the Array
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Array Antennas

Antennas made up of arrays of simpler antennas
Usually dipole arrays
Yagi-Uda
Log Periodic Arrays (LPAs)
Slotted Arrays
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Yagi-Uda Antennas

An narrow band, medium- or high-gain antenna made up 
of dipoles
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Yagi-Uda Antennas
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Log Periodic Array (LPA) Antenna
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Log Periodic Array (LPA) Antenna
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Slotted Array Antenna

Usually a waveguide with slots (slot antennas) cut into one 
surface

Array of dipoles
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Parabolic Reflector Antennas
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Parabolic Reflector Antennas
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Parabolic Reflector Antennas
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Parabolic Reflector Antennas

Parabola
Focus
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Parabolic Reflector Antennas – Aperture Illumination

Parabola
Focus

Low Gain Dipole Feed
Fully Illuminates the Dish

Surface

Higher Gain Yagi Feed
Doesn't Fully Illuminate

the Dish Surface

Parabola
Focus
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Parabolic Reflector Antennas – Gain and Beamwidth
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Horn Antennas
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Horn Antennas
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